
A user-extensible and safe alternative to

the conversion rule using VeriML

Antonis Stampoulis Zhong Shao

Department of Computer Science, Yale University

TYPES 2011



Proof assistants are great!

I Verification of practical software

I Mathematical proofs

I Metatheory of programming languages



More work needed

I Foundational issues
properties of the logic used as the foundation?

I Scalability
how to scale to verification of 100k lines of code?

I Ease-of-use
computer proofs closer to pen-and-paper ones?



Claim: architectural issues
hurting all three aspects



Proof object

A derivation inside a logic.

proof object

evaluation steps

arithmetic steps

steps in user domain

other reasoning steps



Proof checker

Program checking validity of proof objects.

proof object

evaluation steps

proof checker
√

valid!
arithmetic steps

steps in user domain

other reasoning steps

invalid

×



Tactics

Proof objects are very detailed, so we use tactics to
produce parts of them.



Proof script

A program that produces a proof object by combining
tactics.

proof object

evaluation steps

proof checker
√

arithmetic steps

steps in user domain

other reasoning steps
invalid

×

proof script

evaluation tactic

arithmetic tactic

user domain tactic

other tactics

execute
√

invalid

×



Proof assistant

A language environment to develop and execute proof
scripts and tactics; along with a library of tactics and

theorems.



Checking proof objects



Checking proof objects

proof object

evaluation steps (omit)
proof checker √

valid!
arithmetic steps

steps in user domain

other reasoning steps

invalid

×

eval. conversion

I to keep size manageable: conversion rule

I more sophisticated conversion → simpler proofs



Checking proof objects

proof object

evaluation steps (omit)
proof checker √

valid!
arithmetic steps

steps in user domain

other reasoning steps

invalid

×

eval. conversion

I to keep size manageable: conversion rule
I decides whether two propositions are equivalent
I proof can be omitted

I more sophisticated conversion → simpler proofs



Checking proof objects

proof object

evaluation steps (omit)
proof checker √

valid!
arithmetic steps

steps in user domain

other reasoning steps

invalid

×

eval. conversion

I to keep size manageable: conversion rule

I more sophisticated conversion → simpler proofs
I e.g. CoqMT
I but also larger trusted base
I more complicated metatheory
I cannot add user extensions



Checking proof scripts



Checking proof scripts

proof object

evaluation steps

proof checker
√

arithmetic steps

steps in user domain

other reasoning steps
invalid

×

proof script

evaluation tactic

arithmetic tactic

user domain tactic

other tactics

execute
√

invalid

×

I validation: execute and check

I user-extensible: by writing tactics

I no static checking: completely untyped

I more robust by using proof objects



VeriML (ICFP 2010)

A language that supports dependently typed programming
over logical terms.

Develop typed tactics and thus typed proof scripts

e.g. auto : (P : Prop)→ option 〈pf : P 〉

typed proof script

evaluation (impl.)

arithmetic tactic

user domain tactic

other tactics

execute
√

invalid

×

VeriML typecheck
√

invalid

×

proof chk.



VeriML (ICFP 2010)

A language that supports dependently typed programming
over logical terms.

Develop typed tactics and thus typed proof scripts

e.g. auto : (P : Prop)→ option 〈pf : P 〉

typed proof script

evaluation (impl.)

arithmetic tactic

user domain tactic

other tactics

execute
√

invalid

×

VeriML typecheck
√

invalid

×

proof chk.



But still...

typed proof script

evaluation (impl.)

arithmetic tactic

user domain tactic

other tactics

execute
√

invalid

×

VeriML typecheck
√

invalid

×

proof chk.

I proof checker still uses fixed conversion rule

I therefore static checking not user-extensible



Extensible conversion rule

typed proof script

evaluation tactic

arithmetic tactic

user domain tactic

other tactics

execute

√

invalid

×

VeriML typecheck
√

invalid

×

proof chk.
stage-1

typed proof script

evaluation steps

arithmetic steps

user domain steps

other tactics

I user-defined extensions to the proof checker

I based on typed conversion tactics

I type-safety of VeriML guarantees soundness

I essentially, some tactics evaluated prior to others
(simple staging)

I needs the extra type information



Checking tactics



Checking tactics:
Coq, HOL

proof scripts

new tactic code

invocation of new tactic

(type errors) not applicable failure in proof scripts

static
dynamic

× × ×

√

I tactics include proof scripts

I evaluated only upon invocation!

I validity of embedded proof scripts not known statically



Checking tactics:
Coq, HOL (better engineering)

new tactic code

invocation of new tactic

(type errors) not applicable

static
dynamic

proof of aux. lemmas
using proof scripts

√ failure in proof scripts
×

aux. lemmas

××

√

I separate included proof scripts out

I know earlier whether they’re correct

I quite tedious for small (one-tactic) scripts



New idea:
static proof scripts

static proof scripts

new tactic code

invocation of new tactic

type errors

not applicable

dynamic

×

×

√

type-check

eval. static scripts failure in tactic calls

static
×

√

√

I after transformation, static evaluation is possible

I type information makes transformation easy

I more-or-less transparent to the user



Resulting picture

typed proof script

evaluation steps (implicit)
arithmetic steps (implicit)

steps in user domain (implicit)

type checker

tactic

tactic
arith.

conversion

tactic
user

conversion

(invalid)
×

smaller proof chk.

(invalid)
×

valid!
√

eval.
conversion

(checked using)

VeriML



Our toolbox



Higher-order logic

λHOL

(logical terms) t ::= proof object constructors π
| propositions P
| natural numbers, functions etc.
| sorts and types

(environments) Φ ::= • | Φ, x : t
(contextual terms) T ::= [Φ] t



VeriML

ML + dependent programming over contextual terms [Φ] t
of λHOL

τ ::= (normal ML types)
| (X : T )→ τ
| 〈X : T 〉 × τ
| (φ : ctx)→ τ



VeriML

ML + dependent programming over contextual terms [Φ] t
of λHOL

τ ::= (normal ML types)
| (X : T )→ τ
| 〈X : T 〉 × τ
| (φ : ctx)→ τ

dependent function over logical term



VeriML

ML + dependent programming over contextual terms [Φ] t
of λHOL

τ ::= (normal ML types)
| (X : T )→ τ
| 〈X : T 〉 × τ
| (φ : ctx)→ τ

dependent product of logical term



VeriML

ML + dependent programming over contextual terms [Φ] t
of λHOL

τ ::= (normal ML types)
| (X : T )→ τ
| 〈X : T 〉 × τ
| (φ : ctx)→ τ

polymorphism over logic environments



VeriML

ML + dependent programming over contextual terms [Φ] t
of λHOL

τ ::= (normal ML types)
| (X : T )→ τ
| 〈X : T 〉 × τ
| (φ : ctx)→ τ

VeriML: Typed Computation of Logical Terms inside a
Language with Effects, Antonis Stampoulis and Zhong
Shao, ICFP 2010



Pattern matching over terms

match P with
P1 → P2 7→ · · ·

| P1 ∧ P2 7→ · · ·



Pattern matching over contexts

Look into logical environment to extract hypotheses, etc.

assumption : (φ : ctx, P : Prop)→ option 〈P 〉
assumption φ P =

ctxcase φ of
φ′, H : P 7→ return 〈H〉
| φ′, H : (P ′ : Prop) 7→ assumption φ′ P
| φ′, x : (T : Type) 7→ assumption φ′ P



Proof-erasure semantics

I Disallow pattern matching on proof objects

I Therefore proof objects can’t influence evaluation

I Evaluation under proof erasure still guarantees that
valid proof objects exist

I Trivial based on type safety



The conversion rule



Conversion rule

conv
Φ ` π : P P =R P ′

Φ ` π : P ′

I permeates metatheory of the logic

I “hardcoded” tactic to check P =R P ′ implicitly



Throwing conversion away:
explicit equality

conv
Φ ` π : P P =R P ′

Φ ` π : P ′

↓

Φ, x : K ` P : Prop
Φ ` t1 : K Φ ` π : P [t1/x] Φ ` π′ : t1 = t2

Φ ` leibniz (x : K.P ) π π′ : P [t2/x]

Φ, x : K ` d : K′ Φ ` d′ : K
Φ ` betaEq (λx : K.d) d′ : (λx : K.d) d′ = d[d′/x]



Getting conversion back

Write a tactic that decides whether P = P ′ and returns a
proof object if yes; evaluate it under proof-erasure

semantics.

Uses three functions:

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
conversion : (φ : ctx, P : Prop, P ′ : Prop, pf : P, pf ′ : P = P ′)→

〈pf : P ′〉



Getting conversion back

Write a tactic that decides whether P = P ′ and returns a
proof object if yes; evaluate it under proof-erasure

semantics.
Uses three functions:

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
conversion : (φ : ctx, P : Prop, P ′ : Prop, pf : P, pf ′ : P = P ′)→

〈pf : P ′〉



Getting conversion back

Write a tactic that decides whether P = P ′ and returns a
proof object if yes; evaluate it under proof-erasure

semantics.
Uses three functions:

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
conversion : (φ : ctx, P : Prop, P ′ : Prop, pf : P, pf ′ : P = P ′)→

〈pf : P ′〉

Simplify to weak-head normal form.



Getting conversion back

Write a tactic that decides whether P = P ′ and returns a
proof object if yes; evaluate it under proof-erasure

semantics.
Uses three functions:

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
conversion : (φ : ctx, P : Prop, P ′ : Prop, pf : P, pf ′ : P = P ′)→

〈pf : P ′〉

Traverse both terms and check equality; always simplify
through whnf



Getting conversion back

Write a tactic that decides whether P = P ′ and returns a
proof object if yes; evaluate it under proof-erasure

semantics.
Uses three functions:

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
conversion : (φ : ctx, P : Prop, P ′ : Prop, pf : P, pf ′ : P = P ′)→

〈pf : P ′〉

Convert a proof object to a proof of an equivalent
proposition. Uses equal? to do proof of P = P ′.



Weak-head normal form

whnf : (φ : ctx, T : Type, t : T )→ 〈t′ : T, pf : t = t′〉
whnf φ T t =
holcase t of
(t1 : T

′ → T ) (t2 : T
′) 7→

let 〈t′1, pf1〉 = whnf φ (T ′ → T ) t1 in
holcase t′1 of

λx : T ′.tf 7→ 〈[φ] tf/[x := t2], · · · 〉
| t′1 7→ 〈[φ] t′1 t2, · · · 〉

| t 7→ 〈t, · · ·〉



Testing equality

equal? : (φ : ctx, T : Type, t1 : T, t2 : T )→ option 〈t1 = t2〉
equal? φ T t1 t2 =
holcase whnf φ T t1, whnf φ T t2 of

(ta tb), (tc td) 7→
do 〈pf1〉 ← equal? ta tc
〈pf2〉 ← equal? tb td
return 〈· · · proof of ta tb = tc td · · · 〉

| (λx : T.t1), (λx : T.t2) 7→
do 〈pf〉 ← equal? [φ, x : T ] t1 t2

return 〈· · · proof of λx : T.t1 = λx : T.t2 · · · 〉
· · ·



Lifting proof objects to VeriML

From a proof object in the logic with conversion, get an
equivalent typed proof script in VeriML.



Lifting proof objects to VeriML

constructor to tactic of type
λx : P.π Assume e 〈[φ, H : P ]P ′〉 → 〈P → P ′〉
π1 π2 Apply e1 e2 〈P → P ′〉 → 〈P 〉 → 〈P ′〉
λx : K.π Intro e 〈[φ, x : T ]P ′〉 → 〈∀x : T, P ′〉
π d Inst e a 〈∀x : T, P 〉 → (a : T )→

〈P/[x := a]〉
c Lift c (H : P )→ 〈P 〉
(conversion) Conversion 〈P 〉 → 〈P = P ′〉 → 〈P ′〉

Refinements:

I use conversion implicitly

I use type inferrence

I call equal? statically



What did we gain?
Compared to proof objects

I conversion not part of proof checker

I simpler logic

I convertibility can be extended by user, safely

I proof consumer decides tradeoff of trust versus
resources (proof erasure semantics or not)

I essentially: proof consumer adjusts conversion rule at
will!



What did we gain?
Compared to proof scripts

I increased static checking

I can be further extended by user

I example: get proof “skeleton” to work first, do
expensive proof search last



Stacking conversions



Stacking conversions

Idea: use simpler conversion tactics to implicitly prove all
obligations in more complicated ones!



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic

syntactic equality as previously shown, parametric over
whnf-like simplifier



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic

I isolate hypotheses like x = y from context

I blindly rewrite x into y

I bad strategy, but...



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic

I standard textbook implementation of equality with
uninterpreted functions

I uses imperative union-find data structures

I all proofs handled by naive equality



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic

I use existing conversion to simplify proofs of properties

I naive rewriting based on commutativity and
distributivity



Current stack

basic support
naive equality

union-find equality
naive arithmetic
better arithmetic

I more sophisticated arithmetic simplifications

I canonical form of polynomials

I use naive arithmetic to simplify proofs



Summary



Summary:

extensible conversion rule

I A way to extend proof checker for proof objects

I and static checking for proof scripts

I ... through user-defined code

I ... written in a general programming model

I ... without risking soundness

I ... with no metatheory additions to the logic

I ... actually, with reductions

I Using a language for type-safe tactics: VeriML

I Extensive metatheory and prototype implementation



Future work

I compile VeriML to ML

I use hash-consing in conversion

I term nets to know when specific conversion applies

I extend to full CIC



Thanks!
http://www.cs.yale.edu/homes/stampoulis/
(talk to me for draft or implementation!)


