Static and User-Extensible Proof Checking

Antonis Stampoulis Zhong Shao Yale University POPL 2012 Proof assistants are becoming popular in our community

- -CompCert [Leroy et al.]
- -seL4 [Klein et al.]
- —Four-color theorem [Gonthier et al.]
- ... but they're still hard to use
- -1 to 1.5 weeks per paper proof page
- —4 pages of formal proof per 1 page of paper proof [Asperti and Coen '10]

Formal proofs

- —communicated to a fixed proof checker
- -must spell out all details
- -use domain-specific

lemmas

Informal proofs

- –communicated to a person
- -rely on **domainspecific intuition**

-use "obviously"

Formal proofs -communicated to a fixed proof checker -must spell out all details lemmas Informal proofs communicated to a calculus person linear algebra -rely on domainspecific intuition arithmetic -use "obviously"

We need tactics to omit details

- -procedures that produce proofs
- —domain-specific tactics good in large developments
- -but difficult to write!

We need tactics to omit details

- -procedures that pro
- —domain-specific tact developments

—but difficult to write!

untyped
 proofs within tactics
 can be wrong!

Proof assistants are hard to use because
1. cannot extend proof checker → lots of details
2. no checking for tactics → lots of potential errors

These are architectural issues

Our contribution: A new architecture for proof assistants

1. cannot extend proof checker \rightarrow lots of details

2. no checking for tactics \rightarrow lots of potential errors

A new architecture for proof assistants

1. extensible proof checker \rightarrow omit lots of details 1. cannot extend proof checker \rightarrow lots of details

2. no checking for tactics \rightarrow lots of potential errors

full programming modelcontribution:soundness guaranteedture for proof assistants

1. extensible proof checker \rightarrow omit lots of details 1. cannot extend proof checker \rightarrow lots of details

2. no checking for tactics \rightarrow lots of potential errors

A new architecture for proof assistants

1. extensible proof checker \rightarrow omit lots of details 1. cannot extend proof checker \rightarrow lots of details

2. no checking for tactics > lots of potential errors

2. extensible checking for tactics \rightarrow lots of errors avoided

A new architecture for proof assistants

1. extensible proof checker \rightarrow omit lots of details 1. cannot extend proof checker \rightarrow lots of details

2. no checking for tactics > lots of potential errors

2. extensible checking for tactics \rightarrow lots of errors avoided

static checking of contained proofs

A new architecture for proof assistants

1. extensible proof checker \rightarrow omⁱ⁺ of det -

1. cannot extend proof checke \rightarrow lots of details

2. no checking for tactics > lots > f potential error

2. extensible checking for tactics \rightarrow lots concerns and ded

A new architecture for proof assistants

- 1. extensible proof checker \rightarrow omⁱ⁺ of det -
 - 1. cannot extend proof checke → lots of details

2. no checking for tactics > lots >f potential error

- extensible checking for tactics → lots c, errorsded
 More specifically:
 - a new language design
 - a new implementation
 - and a new metatheory

based on VeriML [ICFP'10]

Architecture of proof assistants

Architecture of proof assistants: main notions

Proof	
object	Derivation in a logic
Proof	
checker	Checks proof objects
Iactic	Function producing proof objects
Proof script	Combination of tactics; program producing a proof object

- rich static information
- (de)composable
- checking not extensible

Architecture of proof assistants: Validating proof scripts

- extensible through tactics
- rich programming model
- no static information
- not (de)composable
- hidden proof state

Architecture of proof assistants: Validating proof scripts

- extensible through tactics
- rich programming model

scripts

- no static information
- not (de)composable
- hidden proof state

Key insight: conversion is just a hardcoded trusted tactic

Key insight: conversion is just a hardcoded trusted tactic

but we can trust other tactics too if they have the right type

Key insight: conversion is just a hardcoded trusted tactic

but we can trust other tactics too if they have the right type

none of them needs to be hardcoded!

Typed proof scripts + extensible conversion

- rich static information
- user chooses conversion
- extensible static checking
- smaller proof checker
- can generate proof objects

Type checking tactics: an example

conversionCheck : $(P : \operatorname{Prop}) \rightarrow (P' : \operatorname{Prop}) \rightarrow (\operatorname{proof}: P = P')$

- check propositions for equivalence
- return a proof if they are
- raise an exception otherwise

Metatheory result 1. Type safety
If evaluation succeeds,
the returned proof object is valid
conversionCheck :
$$(P: \mathsf{op}) \rightarrow (P': \mathsf{Prop}) \rightarrow (\mathsf{Prop}) \rightarrow (\mathsf{Prop})$$

- check propositions for equivalence
- return a proof if they are
- raise an exception otherwise
Metatheory result 1. Type safety If evaluation succeeds, the returned proof object is valid

conversionCheck

$$(P: pp) \rightarrow (P': Prop) \rightarrow (proof: P = P')$$

Metatheory result 2. Proof erasure

- chec If evaluation succeeds, a valid proof
- retui object exists even if it's not generated
- raise an exception otherwise

Static checking = type checking + staging under proof-erasure

Static proof scripts in tactics

Motivating Coq Example

Require Import Arith. Variable x : Nat.

Theorem test1 : 0 + x = x. trivial. Qed.

Theorem test2 : x + 0 = x. trivial. Qed.

Qed.

Motivating Coq Example

Require Import Arith. Variable x : Nat.

Theorem test1 : 0 + x = x. trivial. Qed.

Theorem test2 : x + 0 = x. trivial. Qed. Attempt to save an incomplete proof

Let's add this to our conversion rule!

- $\begin{array}{rcl} \mathsf{lemma1} & : & \forall x.x + 0 = x \\ \mathsf{lemma2} & : & \forall xy.x + (\mathsf{succ} \ y) = \mathsf{succ}(x + y) \end{array}$
- write a rewriter based on these lemmas
- register it with conversion
- now it's trivial; lemmas used implicitly

rewriter : $(t:T) \rightarrow (t':T \times proof:t=t')$ rewriter t =match t with $x + y \mapsto$ let y', H = rewriter y in match y' with $0 \mapsto x, ?$ $| succ y'' \mapsto succ (x + y''), ?$ | $\mapsto t$,?

rewriter :
$$(t:T) \rightarrow (t':T \times proof:t=t')$$

rewriter $t =$
match t with
 $x + y \mapsto$
let $y', H =$ rewriter y
match y' with
 $0 \mapsto x, ?$
 $| succ y'' \mapsto succ (x + y''), ?$
 $| _ \longrightarrow t, ?$

rewriter :
$$(t:T) \rightarrow (t':T \times proof:t=t')$$

rewriter $t =$
match t with
 $x + y \mapsto$
let $y', H =$ rewriter y
match y' with
 $0 \mapsto x, ?$
 $| succ y'' \mapsto succ (x + y''), | lemma 2 x y''$
 $| _ - \mapsto t, ?$

rewriter :
$$(t:T) \rightarrow (t':T \times proof:t=t')$$

rewriter $t =$
match t with
 $x + y \mapsto$
let $y', H =$ rewriter y
match y' with
 $0 \quad \mapsto x, ?$
 $| succ y'' \mapsto succ (x + y''), |emmy''$
 $| _ \longrightarrow t, ?$

rewriter :
$$(t:T) \rightarrow (t':T \times proof:t=t')$$

rewriter $t =$
match t with
 $x + y \mapsto$
let $y', H =$ rewriter y
match y' with
 $0 \mapsto x, ?$
 $| succ y'' \mapsto succ (x + y''), ?$
 $| _ \longrightarrow t, ?$

lemma1 : $\forall x.x + 0 = x$ lemma2 : $\forall xy.x + (\operatorname{succ} y) = \operatorname{succ}(x+y)$ Exact : $(proof : P) \rightarrow (proof : P')$ rewriter : $(t:T) \rightarrow (t':T \times proof:t=t')$ x, y, y'': Trewriter t = $H: y = succ \ y''$ match t with $proof: x + y = succ \ (x + \overline{y''})$ $x + y \mapsto$ let y', H = rewriter ymatch y' with $\mapsto x,?$ 0 $succ y'' \mapsto succ (x + y''), ?$ $\mapsto t,?$

lemma1 : $\forall x.x + 0 = x$ lemma2 : $\forall xy.x + (\operatorname{succ} y) = \operatorname{succ}(x+y)$ Exact : $(proof : P) \rightarrow (proof : P')$ rewriter : $(t:T) \rightarrow (t':T \times proof:t = t')$ x, y, y'': Trewriter t =H: y = succ y''match t with $proof: x + y = succ \ (x + y'')$ $x + y \mapsto$ let y', H = rewriter ymatch y' with $\mapsto x,?$ 0 $succ y'' \mapsto succ (x + y''), ?$ $\mapsto t,?$

lemma1 : $\forall x.x + 0 = x$ lemma2 : $\forall xy.x + (\operatorname{succ} y) = \operatorname{succ}(x+y)$ Exact : $(proof : P) \rightarrow (proof : P')$ rewriter : $(t:T) \rightarrow (t':T \times proof:t=t')$ x, y, y'': Trewriter t = $H: y = succ \ y''$ match t with $proof: x + y = succ \ (x + \overline{y''})$ $x + y \mapsto$ let y', H = rewriter ymatch y' with $\mapsto x,?$ 0 $succ y'' \mapsto succ (x + y''), ?$ $\mapsto t,?$

lemma1 : $\forall x.x + 0 = x$ lemma2 : $\forall xy.x + (\operatorname{succ} y) = \operatorname{succ}(x+y)$ Exact : $(proof : P) \rightarrow (proof : P')$ rewriter : $(t:T) \rightarrow (t':T \times proof:t = t')$ x, y, y'': Trewriter t = $H: y = succ \ y''$ match t with $proof: x + y = succ \ (x + \overline{y''})$ $x + y \mapsto$ let y', H = rewriter ymatch y' with $\mapsto x,?$ 0 $succ y'' \mapsto succ (x + y''), \left\{ \substack{\mathsf{Exact}\\(lemma2 \ x \ y'')} \right\}_{stativ}$ $\mapsto t$,?

lemma1 : $\forall x.x + 0 = x$ lemma2 : $\forall xy.x + (\operatorname{succ} y) = \operatorname{succ}(x+y)$ Exact : $(proof : P) \rightarrow (proof : P')$ rewriter : $(t:T) \rightarrow (t':T \times proof:t = t')$ x, y, y'': Trewriter t = $H: y = succ \ y''$ match t with $proof: x + y = s\overline{ucc(x + y'')}$ $x + u \mapsto$ checked at definition time computed once transformation of runtime arguments to constant $\vdash y''), \left\{^{\mathsf{Exact}}_{(lemma2 \; x \; y'')}\right\}_{static}$ arguments

How does it work?

$$\begin{array}{ll} \operatorname{rewriter}: & (\Phi:\operatorname{ctx}) \to (T:[\Phi] \operatorname{Type}) \to (t:[\Phi] T) \\ \to (t':[\Phi] T \times proof:[\Phi] t = t') \end{array} \\ \\ \operatorname{rewriter} \Phi t = \\ & \operatorname{match} t \text{ with} \\ & [\Phi] x + y \mapsto \\ & \operatorname{let} [\Phi] y', [\Phi] H = \operatorname{rewriter} [\Phi] y \text{ in} \\ & \operatorname{match} y' \text{ with} \\ & [\Phi] 0 \quad \mapsto [\Phi] x, ? \\ & | [\Phi] succ y'' \mapsto [\Phi] succ (x + y''), \left\{ \begin{matrix} \operatorname{Exact} \\ (lemma2 x y'') \end{matrix} \right\}_{static} \\ & | - \qquad \mapsto [\Phi] t, ? \end{array}$$

How does it work?

 $\mathsf{Exact} : (\Phi : \mathsf{ctx}) \to (proof : [\Phi] P) \to (proof : [\Phi] P')$

$$\begin{array}{ll} \operatorname{rewriter}: & \begin{pmatrix} \Phi : \operatorname{ctx} \end{pmatrix} \to (T : [\Phi] \operatorname{Type}) \to (t : [\Phi] T) \\ \to (t' : [\Phi] T \times \operatorname{proof}: [\Phi] t = t') \\ \end{array} \\ \begin{array}{l} \operatorname{rewriter} \Phi \ t = \\ & \operatorname{match} t \ \text{with} \\ & [\Phi] \ x + y \mapsto \\ & \operatorname{let} \ [\Phi] \ y', \ [\Phi] \ H \ = \ \operatorname{rewriter} \ [\Phi] \ y \ \text{in} \\ & \operatorname{match} \ y' \ \text{with} \\ & \begin{bmatrix} \Phi \end{bmatrix} 0 \quad \mapsto \ [\Phi] \ x, ? \\ & [\Phi] \ \operatorname{succ} \ y'' \mapsto \ [\Phi] \ \operatorname{succ} \ (x + y''), \\ & \begin{bmatrix} \operatorname{Exact} \\ (\operatorname{lemma2} \ x \ y'') \end{bmatrix}_{static} \\ & \begin{bmatrix} - \end{array} \mapsto \ [\Phi] \ t, ? \end{array}$$

Exact

$$\begin{bmatrix} \text{letstatic } pf = \\ & \text{let } \Phi' = [x, y, y'' : \text{Nat}, H : y = succ y''] \text{ in} \\ & \text{Exact } \Phi' ([\Phi'] \ lemma2 \ x \ y'') \\ & \text{in} \\ & [\Phi] \ pf/[x/\text{id}_{\Phi}, y/\text{id}_{\Phi}, y'/\text{id}_{\Phi}, H/\text{id}_{\Phi}] \\ \text{rewriter } \Phi \ t = \\ & \text{match } t \text{ with} \\ & [\Phi] \ x + y \mapsto \\ & \text{let } [\Phi] \ y', \ [\Phi] \ H = \text{ rewriter } [\Phi] \ y \text{ in} \\ & \text{match } y' \text{ with} \\ & [\Phi] \ 0 \qquad \mapsto [\Phi] \ x, ? \\ & [\Phi] \ succ \ y'' \mapsto [\Phi] \ succ \ (x + y''), \left\{ \begin{matrix} \text{Exact} \\ (lemma2 \ x \ y'') \end{matrix} \right\}_{static} \\ & - \qquad \mapsto [\Phi] \ t, ? \end{bmatrix} \\ \end{bmatrix}$$

Implementation

http://www.cs.yale.edu/homes/stampoulis/

- type inferencing and implicit arguments
- compiler to OCaml
- rewriter code generation
- inductive types

Talk to me for a demo!

What's in the paper and TR

- Static and dynamic semantics
- Metatheory: *Type-safety theorem Proof erasure theorem Static proof script transformation*
- Implementation details and examples implemented
- Typed proof scripts as flexible proof certificates

Related work

- proof-by-reflection
 - restricted programming model (total functions)
 - tedious to set up
 - here: no need for termination proofs
- automation through canonical structures / unification hints
 - restricted programming model (logic programming)
 - very hard to debug

Summary

- a new architecture for proof assistants
- user-extensible checking of proofs and tactics
- minimal trusted core
- reduce required effort for formal proofs

Thanks!

http://www.cs.yale.edu/homes/stampoulis/

Backup slides

Type checking proofs and tactics

- -manipulate proofs and
- propositions in a type-safe manner
- -dependent pattern matching on logical terms
- -logic and computation are kept separate
- -Beluga [Pientka & Dunfield '08] -Delphin [Poswolsky & Schürmann '08]
- -VeriML [Stampoulis & Shao '10]

Related work

- LCF family of proof assistants
 - no information while writing proof scripts/tactics
- Coq / CoqMT
 - conversion rule is fixed
 - changing it requires re-engineering
- NuPRL
 - extensional type theory and sophisticated conversion
 - here: user decides conversion (level of undecidability)
- Beluga / Delphin
 - use as metalogic for LF
 - here: the logic is fixed; the language is the proof assistant