
Static and User-Extensible
Proof Checking

Antonis Stampoulis Zhong Shao

Yale University

POPL 2012

Proof assistants are becoming
popular in our community

—CompCert [Leroy et al.]

—seL4 [Klein et al.]

—Four-color theorem [Gonthier et al.]

—1 to 1.5 weeks per paper proof page

—4 pages of formal proof per 1 page
of paper proof

… but they’re still hard to use

[Asperti and Coen ‘10]

—communicated to a fixed
proof checker

—must spell out all details

—use domain-specific
lemmas

Formal proofs

—communicated to a
person

—rely on domain-
specific intuition

—use “obviously”

Informal proofs

—communicated to a fixed
proof checker

—must spell out all details

—use domain-specific
lemmas

Formal proofs

—communicated to a
person

—rely on domain-
specific intuition

—use “obviously”

Informal proofs

calculus

linear algebra

arithmetic

—procedures that produce proofs

—domain-specific tactics good in large
developments

—but difficult to write!

We need tactics to omit details

—procedures that produce proofs

—domain-specific tactics good in large
developments

—but difficult to write!

We need tactics to omit details

- untyped
- proofs within tactics

can be wrong!

Proof assistants are hard to use because

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

These are architectural issues

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

full programming model
soundness guaranteed

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

2. extensible checking for tactics → lots of errors avoided

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

2. extensible checking for tactics → lots of errors avoided

static checking of contained proofs

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

2. extensible checking for tactics → lots of errors avoided

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

2. extensible checking for tactics → lots of errors avoided

“intuition” stack

arithmetic

congruence

βι-
conversion

Our contribution:
A new architecture for proof assistants

1. cannot extend proof checker → lots of details

2. no checking for tactics → lots of potential errors

1. extensible proof checker → omit lots of details

2. extensible checking for tactics → lots of errors avoided
More specifically:
- a new language design
- a new implementation
- and a new metatheory

based on VeriML [ICFP’10]

Architecture of proof assistants

Architecture of proof assistants:
main notions

Derivation in a logic
Proof
object

Checks proof objects
Proof

checker

Function producing proof objects
Tactic

Combination of tactics; program
producing a proof object

Proof script

Architecture of proof assistants:
Checking proof objects

Proof object

Proof
checker

Architecture of proof assistants:
Checking proof objects

Proof object

Proof
checker

Conversion rule

Implicitly check
equivalences

(proof omitted)

Architecture of proof assistants:
Checking proof objects

Proof object

Proof
checker

Coq

βι-conversion

Architecture of proof assistants:
Checking proof objects

Proof object

Proof
checker

CoqMT

βι-conversion +
linear arithmetic

Architecture of proof assistants:
Checking proof objects

Proof object

Proof
checker

- rich static information
- (de)composable
- checking not extensible

Architecture of proof assistants:
Validating proof scripts

Proof script

Proof
checker

Proof object

evaluation

- extensible through tactics
- rich programming model
- no static information
- not (de)composable
- hidden proof state

Arithmetic
tactic

User tactic

Other tactic

Architecture of proof assistants:
Validating proof scripts

Proof script

Proof
checker

Proof object

evaluation

- extensible through tactics
- rich programming model
- no static information
- not (de)composable
- hidden proof state

use conversion for more robust
scripts

Arithmetic
tactic

User tactic

Other tactic

Moving to typed proof scripts

Proof script

Proof object

Proof
checker

evaluation

Proof
checker

Arithmetic
tactic

User tactic

Other tactic

evaluation

Moving to typed proof scripts

Proof script

Proof object

Proof
checker

evaluation

Proof
checker

Arithmetic
tactic

User tactic

Other tactic

evaluation

Moving to typed proof scripts

Proof script

Proof object

Proof
checker

evaluation

Proof
checker

Arithmetic
tactic

User tactic

Other tactic

evaluation

Proof
checker

evaluation

Moving to typed proof scripts

Type checker

Proof script

Proof object

Proof
checker

evaluation

Proof
checker

Arithmetic
tactic

User tactic

Other tactic

evaluation

Proof
checker

evaluation

Moving to typed proof scripts

Typed proof script

Type checker

Proof script

Proof object

Proof
checker

evaluation

Proof
checker

Arithmetic
tactic

User tactic

Other tactic

Arithmetic
tactic

User tactic

Other tactic

evaluation

Proof
checker

evaluation

Moving to typed proof scripts +
extensible conversion

Typed proof script

Type checker

Proof
checker

evaluation

Arithmetic
tactic

User tactic

Other tactic

Moving to typed proof scripts +
extensible conversion

Typed proof script

Type checker

Proof
checker

evaluation

Arithmetic
tactic

User tactic

Other tactic

Key insight:
conversion is just a

hardcoded trusted tactic

Moving to typed proof scripts +
extensible conversion

Typed proof script

Type checker

Proof
checker

evaluation

Arithmetic
tactic

User tactic

Other tactic

Key insight:
conversion is just a

hardcoded trusted tactic

but we can trust other
tactics too if they have

the right type

Moving to typed proof scripts +
extensible conversion

Typed proof script

evaluation

Key insight:
conversion is just a

hardcoded trusted tactic

but we can trust other
tactics too if they have

the right type

none of them needs to
be hardcoded!

Type checker

Proof
checker

Other tactic

Typed proof scripts +
extensible conversion

Typed proof script

evaluation

Type checker

Proof
checker

- rich static information
- user chooses conversion
- extensible static checking
- smaller proof checker
- can generate proof

objects

Type checking tactics: an example

- check propositions for equivalence
- return a proof if they are
- raise an exception otherwise

Type checking tactics: an example

- check propositions for equivalence
- return a proof if they are
- raise an exception otherwise

Metatheory result 1. Type safety
If evaluation succeeds,

the returned proof object is valid

Type checking tactics: an example

- check propositions for equivalence
- return a proof if they are
- raise an exception otherwise

Metatheory result 1. Type safety
If evaluation succeeds,

the returned proof object is valid

Metatheory result 2. Proof erasure
If evaluation succeeds, a valid proof

object exists even if it’s not generated

Two modes of evaluation

Typed proof script

Type checker

Proof
checker

Two modes of evaluation

evaluation

proof
object

Typed proof script

Type checker

Proof
checker

Two modes of evaluation

evaluation

proof
object

proof
erasure

evaluation

Typed proof script

Type checker

Proof
checker

Two modes of evaluation

evaluation

proof
object

proof
erasure

evaluation

mode controlled per
function

Typed proof script

Type checker

Proof
checker

Typed proof script

Type checker

evaluation

Proof
checker

Static checking = type checking +
staging under proof-erasure

Typed proof script

Type checker

evaluation

Proof
checker

Static checking = type checking +
staging under proof-erasure

typechecking

Typed proof script

Type checker

evaluation

Proof
checker

Static checking = type checking +
staging under proof-erasure

typechecking

stage-one evaluation
with proof erasure

Typed proof script

Type checker

evaluation

Proof
checker

Static checking = type checking +
staging under proof-erasure

typechecking

stage-one evaluation
with proof erasure

evaluation of residual
program

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion

conversion in Coq

removed from trusted base

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion

makes most uses of
rewrite/autorewrite

unnecessary

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion

ring_simplify for Nat
close to CoqMT

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion • no additions to logic metatheory
• actually, with reductions

• no proof by reflection or translation validation
• leveraging static proof scripts

A stack of conversion rules

arithmetic simplification

congruence closure

βι-conversion

A stack of conversion rules

arithmetic simplification

naïve arithmetic conversion

congruence closure

naïve equality
conversion

βι-
conversion

A stack of conversion rules

arithmetic simplification

naïve arithmetic conversion

congruence closure

naïve equality
conversion

βι-
conversion

• potentially non-
terminating

• reduce proving
for “real”
versions

Static proof scripts in tactics

Require Import Arith.
Variable x : Nat.

Theorem test1 : 0 + x = x.
trivial.
Qed.

Theorem test2 : x + 0 = x.
trivial.
Qed.

Motivating Coq Example

Require Import Arith.
Variable x : Nat.

Theorem test1 : 0 + x = x.
trivial.
Qed.

Theorem test2 : x + 0 = x.
trivial.
Qed.

Motivating Coq Example

Proof
completed

Require Import Arith.
Variable x : Nat.

Theorem test1 : 0 + x = x.
trivial.
Qed.

Theorem test2 : x + 0 = x.
trivial.
Qed.

Motivating Coq Example

Attempt to save
an incomplete

proof

Require Import Arith.
Variable x : Nat.

Theorem test1 : 0 + x = x.
trivial.
Qed.

Theorem test2 : x + 0 = x.
trivial.
Qed.

Motivating Coq Example

Conversion rule
can prove this

but can’t prove
this

Let’s add this to our conversion rule!

- write a rewriter based on these lemmas
- register it with conversion
- now it’s trivial; lemmas used implicitly

• similar to trivial
• uses conversion
• P and P’ inferred

• not checked statically
• recomputed many times

• checked at definition time
• computed once
• transformation of runtime

arguments to constant
arguments

How does it work?

How does it work?

How does it work?

How does it work?

Implementation

http://www.cs.yale.edu/homes/stampoulis/

• type inferencing and implicit arguments

• compiler to OCaml

• rewriter code generation

• inductive types

Talk to me for a demo!

What’s in the paper and TR

• Static and dynamic semantics

• Metatheory:
Type-safety theorem
Proof erasure theorem
Static proof script transformation

• Implementation details and
examples implemented

• Typed proof scripts as flexible
proof certificates

Related work

• proof-by-reflection

– restricted programming model (total functions)

– tedious to set up

– here: no need for termination proofs

• automation through canonical structures /
unification hints

– restricted programming model (logic programming)

– very hard to debug

Summary
• a new architecture for proof assistants

• user-extensible checking of proofs and tactics

• minimal trusted core

• reduce required effort for formal proofs

Thanks!
http://www.cs.yale.edu/homes/stampoulis/

Backup slides

Type checking proofs and tactics

Type checker

Proof
checker

-manipulate proofs and
propositions in a type-safe manner

-dependent pattern matching on
logical terms

-logic and computation are kept
separate

-Beluga [Pientka & Dunfield ‘08]
-Delphin [Poswolsky & Schürmann ‘08]
-VeriML [Stampoulis & Shao ‘10]

Related work

• LCF family of proof assistants
– no information while writing proof scripts/tactics

• Coq / CoqMT
– conversion rule is fixed
– changing it requires re-engineering

• NuPRL
– extensional type theory and sophisticated conversion
– here: user decides conversion (level of undecidability)

• Beluga / Delphin
– use as metalogic for LF
– here: the logic is fixed; the language is the proof

assistant

