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Proof assistants are becoming 
popular in our community 

—CompCert [Leroy et al.] 

—seL4 [Klein et al.] 

—Four-color theorem [Gonthier et al.] 

—1 to 1.5 weeks per paper proof page 

—4 pages of formal proof per 1 page 
of paper proof 

… but they’re still hard to use 

[Asperti and Coen ‘10] 



—communicated to a fixed 
proof checker 

—must spell out all details 

—use domain-specific 
lemmas 
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—procedures that produce proofs 

—domain-specific tactics good in large 
developments 

—but difficult to write! 

 

We need tactics to omit details 

- untyped 
- proofs within tactics 

can be wrong! 



Proof assistants are hard to use because 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

These are architectural issues 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

full programming model 
soundness guaranteed 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

2. extensible checking for tactics → lots of errors avoided 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

2. extensible checking for tactics → lots of errors avoided 

static checking of contained proofs 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

2. extensible checking for tactics → lots of errors avoided 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

2. extensible checking for tactics → lots of errors avoided 

“intuition” stack 

arithmetic 

congruence 

βι-
conversion 



Our contribution: 
A new architecture for proof assistants 

1. cannot extend proof checker → lots of details 

2. no checking for tactics → lots of potential errors 

1. extensible proof checker → omit lots of details 

2. extensible checking for tactics → lots of errors avoided 
More specifically: 
- a new language design 
- a new implementation  
- and a new metatheory 

based on VeriML [ICFP’10] 
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Architecture of proof assistants: 
main notions 

Derivation in a logic 
Proof 
object 

Checks proof objects 
Proof 

checker 

Function producing proof objects 
Tactic 

Combination of tactics; program 
producing a proof object 

Proof script 
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(proof omitted) 
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- extensible through tactics 
- rich programming model 
- no static information 
- not (de)composable 
- hidden proof state 

use conversion for more robust 
scripts 

Arithmetic 
tactic 

User tactic 
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Moving to typed proof scripts + 
extensible conversion 

Typed proof script 

 
 

evaluation

Key insight: 
conversion is just a 

hardcoded trusted tactic 

but we can trust other 
tactics too if they have 

the right type 

none of them needs to 
be hardcoded! 
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Typed proof scripts + 
extensible conversion 

Typed proof script 

 
 

evaluation

 
Type checker 

 
 
 

 
   

  

  

Proof 
checker 

- rich static information 
- user chooses conversion 
- extensible static checking 
- smaller proof checker 
- can generate proof 

objects  
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Type checking tactics: an example 

- check propositions for equivalence 
- return a proof if they are 
- raise an exception otherwise 

Metatheory result 1. Type safety 
If evaluation succeeds, 

the returned proof object is valid 

Metatheory result 2. Proof erasure 
If evaluation succeeds, a valid proof 

object exists even if it’s not generated 
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evaluation 
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Type checker 

 
 
 

 
   

  

  

 
 

evaluation

Proof 
checker 

Static checking = type checking + 
staging under proof-erasure 

typechecking 

stage-one evaluation 
with proof erasure 

evaluation of residual 
program 
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A stack of conversion rules 

arithmetic simplification 

congruence closure 

βι-conversion • no additions to logic metatheory 
• actually, with reductions 

• no proof by reflection or translation validation 
• leveraging static proof scripts 
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A stack of conversion rules 

arithmetic simplification 

naïve arithmetic conversion 

congruence closure 

naïve equality 
conversion 

βι-
conversion 

• potentially non-
terminating 

• reduce proving 
for “real” 
versions 



Static proof scripts in tactics 
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Variable x : Nat. 
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proof 



Require Import Arith. 
Variable x : Nat. 
 
Theorem test1 : 0 + x = x. 
trivial. 
Qed. 
 
Theorem test2 : x + 0 = x. 
trivial. 
Qed. 

Motivating Coq Example 

Conversion rule 
can prove this 

but can’t prove 
this 



Let’s add this to our conversion rule! 

- write a rewriter based on these lemmas 
- register it with conversion 
- now it’s trivial; lemmas used implicitly 























• similar to trivial 
• uses conversion 
• P and P’ inferred 





• not checked statically 
• recomputed many times  







• checked at definition time 
• computed once 
• transformation of runtime 

arguments to constant 
arguments 
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Implementation 

http://www.cs.yale.edu/homes/stampoulis/ 

• type inferencing and implicit arguments 

• compiler to OCaml 

• rewriter code generation 

• inductive types 

 
Talk to me for a demo! 



What’s in the paper and TR 

• Static and dynamic semantics 

• Metatheory: 
Type-safety theorem 
Proof erasure theorem 
Static proof script transformation 

• Implementation details and 
examples implemented 

• Typed proof scripts as flexible 
proof certificates 



Related work 

• proof-by-reflection 

– restricted programming model (total functions) 

– tedious to set up 

– here: no need for termination proofs 

• automation through canonical structures / 
unification hints 

– restricted programming model (logic programming) 

– very hard to debug 



Summary 
• a new architecture for proof assistants 

• user-extensible checking of proofs and tactics 

• minimal trusted core 

• reduce required effort for formal proofs 

Thanks! 
http://www.cs.yale.edu/homes/stampoulis/ 
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Type checking proofs and tactics 

 
Type checker 

 
 
 

Proof 
checker 

-manipulate proofs and 
propositions in a type-safe manner 

-dependent pattern matching on 
logical terms 

-logic and computation are kept 
separate 

-Beluga [Pientka & Dunfield ‘08] 
-Delphin [Poswolsky &  Schürmann ‘08] 
-VeriML [Stampoulis & Shao ‘10] 



Related work 

• LCF family of proof assistants 
– no information while writing proof scripts/tactics 

• Coq / CoqMT 
– conversion rule is fixed 
– changing it requires re-engineering 

• NuPRL 
– extensional type theory and sophisticated conversion 
– here: user decides conversion (level of undecidability) 

• Beluga / Delphin 
– use as metalogic for LF 
– here: the logic is fixed; the language is the proof 

assistant 

 


