VeriML: Type-safe computation with terms

of higher-order logic

Antonis Stampoulis Zhong Shao

Department of Computer Science, Yale University

Dependently Typed Programming 2010
July 9-10, Edinburgh, UK

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Introduction

Goal of this work

Design a language that combines general-purpose
programming constructs with first-class support for
manipulation of propositions and proof objects.

Motivation

| A

Provide good language support for writing domain-specific
tactics and decision procedures, to be used as part of
large-scale proof development.

A\

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

In large proof developments in proof assistants like Coq and
Isabelle, the user needs to construct domain-specific tactics
and decision procedures to greatly reduce manual proving
effort.

@ Evidenced in the YNot project: verifying imperative
programs with relatively small manual effort thanks to
domain-specific tactics.

@ Another example: different parts of an OS kernel require
different abstraction levels:; therefore should be verified
with different program logics. Want automated provers
for each one of them!

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics

Current language support is lacking. Available choices:
@ Write them in ML (LCF family, Coq, Isabelle)
@ Use LTac (Coq)

@ Use proof-by-reflection

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics in ML

proofs

X . user-defined tactics,
logic tactics .
decision procedures, etc.

ML

users have to know internals of proof assistant

no information at the type-level about logical terms
programming expressivity of ML (general recursion, imperative
data structures)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics in LTa

C

user-defined tactics,
decision procedures,
etc.

logic tactics

LTac language

ML

support for pattern matching over logical terms

general recursion allowed

completely untyped language, no static guarantees of safety
complex data-structures or imperative features not supported
binding not always handled correctly

Antonis Stampoulis

VeriML: Type-safe computation with terms of higher-order logic

Developing tactics using proof-by-reflection

user-defined decision procedures, etc.

based on reflection

logic tactics

ML

type-safe support for fragment of logic

strong static guarantees

requires use of mix of languages, tedious encoding (esp. when
binding is involved)

limited programming model: no general recursion or
imperative features

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Our approach: VeriML

tactics, decision procedures,

theorem provers, proofs, etc.

ML + logic

explicit, type-safe support for logic
full programming model of ML

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Language design overview

Basic features of ML-like language

@ General recursion

@ Higher-order functions
@ Algebraic datatypes (lists, trees, etc.)
@ References, arrays

v

Logic-specific features

@ Dependent types for terms of higher-order logic

@ Pattern-matching construct for logical terms

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Language design overview

Similar to languages for computation with LF terms (Delphin
and Beluga). But:

@ Instead of LF we use a higher-order logic that is a type
theory modeled after CIC — thus it includes a notion of
computation and terms are identified up to it.

@ Terms in the computational language are not meant to be
seen as meta-logical proofs.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

The higher-order logic that we use: AHOL™

A combination of a simple higher-order logic with proof
objects (AnoL) with some features of the Calculus of Inductive
Constructions.

@ Propositions and inductive data types living in same
universe
No dependent types, no w-quantification
Total functions over inductive data types

°
°
@ Inductive predicates for logical connectives and relations
@ Explicit proof objects classified by propositions

°

Logical terms are viewed up to evaluation of total
functions ((t-equivalence)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

The higher-order logic that we use

wnas(/() ::= inductive types : Nat, List,--- | Prop
| Kl — K2
dom. of discourse(d) .= terms Of inductive typeS :
x, zero, succ(d), nil, cons(d, d), - - -
| total functions between inductive types
propositions(P) L= Pl — P2 | \V/:E . KP
| inductively defined predicates : <, - - -
| inductively defined connectives : A, V,—, - -

proof objects() i= Ax : P | o' | A : Ko | wd

| elimination principles for inductive definitions

HoLterms(t) = K | d | P |« Typing:

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Why we chose this logic

e Simple, “uncontroversial” common core between most
proof assistants

e Easy to extend if needed

@ Simple metatheory

@ Equivalence up to computation reduces proof object size

@ Maintains most of the complexities of theories like CIC,

such that our results can be extended to them

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example:

Propositional tautologies
prover

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: IIP : Prop.option LT(P)

Prop logical sort for propositions
LT(-) lift logical term into computational-level types
LT(T) £ Yz : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: [IP : Prop.option LT(P)

Prop logical sort for propositions
LT(-) lift logical term into computational-level types
LT(T) £ Yz : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: IIP : Prop.option LT(P)

Prop logical sort for propositions
LT(-) lift logical term into computational-level types
LT(T) £ Yz : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: IIP : Prop.option LT(P)

Prop logical sort for propositions
LT(-) lift logical term into computational-level types
LT(T) £ Yz : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

tauto P = holcase P of
Py NP, +— do pf; « tauto P;
pf, < tauto Ps;
(--+ proof of Py APy ---)
| PV P, +— (do pf; « tauto Pi;
(--+ proofof PyV Py ---)) ||
(do pfy, < tauto P;
(--- proof of PV Py ---))
| True +— Some (--- proof of True ---)
| P! +— None

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders

How to extend to handle quantification case?

tauto P = holcase P of

| Vx: A.P" +— do pf < tauto P’;
(-« proof of Vx : AP ---)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders

How to extend to handle quantification case?

tauto P = holcase P of
| Vo : A.P" +— do pf < tauto P’;
(--- proof of Yz : AP ---)

Need to track the fact that P’ and pf refer to an extended
context compared to P

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Modeled after contextual modal type theory, as used in Beluga.
Use contextual terms — terms carrying the context they refer to

OFt: ¢t

T = [®]t Typing: W

Introduce contextual variables or metavariables — variables
standing for contextual terms, and the associated environment

M
M:=e| X:T

Computational language manipulates contextual terms instead
of simple logical terms, therefore binds metavariables.

To=- | IX:Tr | XX T

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Need to extend the logic, so that we can use metavariables as
part of logical terms.

to=--- | X/o

X :[®]te M M; o d
M; '+ X/o: tlo/P]

X will eventually be substituted with a term with free
variables coming from an environment ®. The substitution o
needs to map such variables into terms well-typed under the
current &’ context.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: parametric contexts

@ Need to be able to write functions that work with terms
living in any context

@ Therefore need a notion of quantification over contexts in
the computational language.

@ Simple extension to contextual terms and variables as
presented so far.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Type of tauto becomes:

tauto :: [1® : ctx.IIP : [®] Prop.option LT([®] P)
tauto ® P = holcase P of

| Vo : A.P" +— do pf < tauto (®, = : A) P';
([O] Az : A.pf/[ide, =])

| PP — P, +— do pf <« tauto (¢, = : P) Py;
([®] Az = Py.pf/[ids, x])

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

@ Strong static guarantees (similar to proof-by-reflection)

@ Easy to extend (e.g. recursively prove premises of
hypotheses)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example:
Deciding equality

Antonis Stampoulis VeriML: Type-safe computation wi

Example: deciding equality

@ Given a list of proofs of equality between terms, decide
whether two terms are equal.

@ Common algorithms for this procedure use some form of
an imperative union-find data structure in order to be
efficient.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Simple algorithm for deciding equality

@ Maintain a union-find data-structure that represents
equivalence classes.

@ Each equivalence class has one representative term.

@ Each term we are interested in refers to a parent term
that belongs to the same equivalence class.

o If a term refers to itself, it is considered to be the
representative of its equivalence class.

@ When a new equality between two terms is processed,
find their representatives; if they are not the same, merge
the two equivalence classes by making one representative
the parent of the other.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

@ We choose to encode the union-find data structure as a
hash table.

@ Each term gets mapped into a value representing its
parent term.

@ We also want to yield proofs, so we store a proof object
on how a term is equal to its parent.

@ We have a built-in hash function for logical terms.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:
eghash = array (XX : T.XX": T.LT(X = X))
Each array element is a key-value pair, mapping one term, the

key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:
eghash = array (XX : T.XX": T.LT(X = X))
Each array element is a key-value pair, mapping one term, the

key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:
eghash = array (XX : T.XX": TLT(X = X))
Each array element is a key-value pair, mapping one term, the

key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:
eghash = array (XX : T.XX": T.LT(X = X))
Each array element is a key-value pair, mapping one term, the

key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:
eghash = array (XX : T.XX": TLT(X = X))
Each array element is a key-value pair, mapping one term, the

key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

find:

given a term and a hash-table, return the representative of its
equivalence class, plus a proof of equivalence

I1X : T.eghash — X' : T.LT(X = X')

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

union:

given two terms, and a proof of their equivalence, update the
hash-table accordingly

IIX : TIIX': T.Ilpf : X = X'.eqhash — unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

areEqual?:

given two terms and a hash-table, determine whether they're
equal or not

IIX : T.I1X" : T.eghash — option LT(X = X')

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Deciding equality

@ Simple to adapt the involved data structures in VeriML
e While also yielding proofs
@ Termination non-trivial, but didn't need to prove it

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Metatheory & implementation

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

@ Developed the type system and small-step operational
semantics for VeriML

@ Proved progress and preservation for the language

@ Proof for normal ML features orthogonal to logic-related
features

@ Details in our upcoming ICFP 2010 paper, plus
accompanying TR

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

o If we disallow pattern-matching over proof objects, we
can prove that semantics are preserved even if proof
objects are erased

@ Type-safety guarantees that valid proof objects exist in
principle

@ Depending on wanted level of assurance, we can choose
to produce such proof objects or not

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Implementation

@ Prototype implementation in OCaml
@ About 5k lines of code
@ Implementation of logic is about 800 lines (trusted base)

@ Examples that type-check and run:

e Propositional tautologies prover

e Extension to also use equalities with uninterpreted
functions

o Conversion of formulas to NNF

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Proof assistants

@ Use the language in order to develop the infrastructure of
a proof assistant

@ Type-safe proof scripts that don't need to generate proof
objects

Questions:
@ How to represent proof states
@ How to code the basic LCF tactics
@ How should interactivity be handled

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Dependently typed languages

@ Programming in languages like Agda, Epigram, etc.
involves a form of theorem proving
@ Evidenced in the Russell framework

@ Can we provide a way to automate part of this using a
similar computational language?

@ Pattern matching is form of typecase construct

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Certifying compilers, static analysis tools

@ Leverage the language to write such tools that produce
proofs

@ Use proof object erasure to avoid runtime costs

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Thanks a lot!

More info:
http://flint.cs.yale.edu/publications/veriml.html
http://zoo.cs.yale.edu/ ams257

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

