
VeriML: Type-safe computation with terms

of higher-order logic

Antonis Stampoulis Zhong Shao

Department of Computer Science, Yale University

Dependently Typed Programming 2010
July 9-10, Edinburgh, UK

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Introduction

Goal of this work

Design a language that combines general-purpose
programming constructs with first-class support for
manipulation of propositions and proof objects.

Motivation

Provide good language support for writing domain-specific
tactics and decision procedures, to be used as part of
large-scale proof development.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Motivation

In large proof developments in proof assistants like Coq and
Isabelle, the user needs to construct domain-specific tactics
and decision procedures to greatly reduce manual proving
effort.

Evidenced in the YNot project: verifying imperative
programs with relatively small manual effort thanks to
domain-specific tactics.

Another example: different parts of an OS kernel require
different abstraction levels; therefore should be verified
with different program logics. Want automated provers
for each one of them!

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics

Current language support is lacking. Available choices:

Write them in ML (LCF family, Coq, Isabelle)

Use LTac (Coq)

Use proof-by-reflection

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics in ML

ML

tactics
user-defined tactics,

decision procedures, etc.

proofs

logic

users have to know internals of proof assistant
no information at the type-level about logical terms
programming expressivity of ML (general recursion, imperative
data structures)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics in LTac

ML

tactics LTac languagelogic

user-defined tactics,
decision procedures,

etc.

support for pattern matching over logical terms
general recursion allowed
completely untyped language, no static guarantees of safety
complex data-structures or imperative features not supported
binding not always handled correctly

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Developing tactics using proof-by-reflection

ML

tactics

user-defined decision procedures, etc.

based on reflection

logic

type-safe support for fragment of logic
strong static guarantees
requires use of mix of languages, tedious encoding (esp. when
binding is involved)
limited programming model: no general recursion or
imperative features

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Our approach: VeriML

ML + logic

tactics, decision procedures,

theorem provers, proofs, etc.

explicit, type-safe support for logic
full programming model of ML

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Language design overview

Basic features of ML-like language

General recursion

Higher-order functions

Algebraic datatypes (lists, trees, etc.)

References, arrays

Logic-specific features

Dependent types for terms of higher-order logic

Pattern-matching construct for logical terms

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Language design overview

Similar to languages for computation with LF terms (Delphin
and Beluga). But:

Instead of LF we use a higher-order logic that is a type
theory modeled after CIC – thus it includes a notion of
computation and terms are identified up to it.

Terms in the computational language are not meant to be
seen as meta-logical proofs.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

The higher-order logic that we use: λHOLind

A combination of a simple higher-order logic with proof
objects (λHOL) with some features of the Calculus of Inductive
Constructions.

Propositions and inductive data types living in same
universe

No dependent types, no ω-quantification

Total functions over inductive data types

Inductive predicates for logical connectives and relations

Explicit proof objects classified by propositions

Logical terms are viewed up to evaluation of total
functions (βι-equivalence)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

The higher-order logic that we use

kinds(K) ::= inductive types : Nat, List, · · · | Prop
| K1 → K2

dom. of discourse(d) ::= terms of inductive types :
x, zero, succ(d), nil, cons(d, d), · · ·
| total functions between inductive types

propositions(P) ::= P1 → P2 | ∀x : K.P
| inductively defined predicates : ≤, · · ·
| inductively defined connectives : ∧,∨,¬, · · ·

proof objects(π) ::= λx : P.π | π π′ | λx : K.π | π d
| elimination principles for inductive definitions

HOL terms(t) ::= K | d | P | π Typing: Φ ` t : t′

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Why we chose this logic

Simple, “uncontroversial” common core between most
proof assistants

Easy to extend if needed

Simple metatheory

Equivalence up to computation reduces proof object size

Maintains most of the complexities of theories like CIC,
such that our results can be extended to them

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example:
Propositional tautologies

prover

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: ΠP : Prop.option LT(P)

Prop logical sort for propositions
LT(·) lift logical term into computational-level types

LT(T) , Σx : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: ΠP : Prop.option LT(P)

Prop logical sort for propositions
LT(·) lift logical term into computational-level types

LT(T) , Σx : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: ΠP : Prop.option LT(P)

Prop logical sort for propositions
LT(·) lift logical term into computational-level types

LT(T) , Σx : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

A simple automated prover for propositional tautologies.
Given a proposition, attempt to construct a proof object for it.

tauto :: ΠP : Prop.option LT(P)

Prop logical sort for propositions
LT(·) lift logical term into computational-level types

LT(T) , Σx : T.unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

tauto P = holcase P of
P1 ∧ P2 7→ do pf1 ← tauto P1;

pf2 ← tauto P2;
〈· · · proof of P1 ∧ P2 · · · 〉

| P1 ∨ P2 7→ (do pf1 ← tauto P1;
〈· · · proof of P1 ∨ P2 · · · 〉) ||

(do pf2 ← tauto P2;
〈· · · proof of P1 ∨ P2 · · · 〉)

| True 7→ Some 〈· · · proof of True · · · 〉
| P ′ 7→ None

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders

How to extend to handle quantification case?

tauto P = holcase P of
· · ·
| ∀x : A.P ′ 7→ do pf← tauto P ′;

〈· · · proof of ∀x : A.P ′ · · · 〉
| · · ·

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders

How to extend to handle quantification case?

tauto P = holcase P of
· · ·
| ∀x : A.P ′ 7→ do pf← tauto P ′;

〈· · · proof of ∀x : A.P ′ · · · 〉
| · · ·

Need to track the fact that P ′ and pf refer to an extended
context compared to P

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Modeled after contextual modal type theory, as used in Beluga.
Use contextual terms – terms carrying the context they refer to

T ::= [Φ] t Typing:
Φ ` t : t′

` [Φ] t : [Φ] t′

Introduce contextual variables or metavariables – variables
standing for contextual terms, and the associated environment
M

M ::= • | X : T

Computational language manipulates contextual terms instead
of simple logical terms, therefore binds metavariables.

τ ::= · · · | ΠX : T.τ | ΣX : T.τ

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Need to extend the logic, so that we can use metavariables as
part of logical terms.

t ::= · · · | X/σ

X : [Φ] t ∈M M; Φ′ ` σ : Φ

M; Φ′ ` X/σ : t[σ/Φ]

X will eventually be substituted with a term with free
variables coming from an environment Φ. The substitution σ
needs to map such variables into terms well-typed under the
current Φ′ context.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: parametric contexts

Need to be able to write functions that work with terms
living in any context

Therefore need a notion of quantification over contexts in
the computational language.

Simple extension to contextual terms and variables as
presented so far.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Handling binders: contextual terms

Type of tauto becomes:

tauto :: ΠΦ : ctx.ΠP : [Φ] Prop.option LT([Φ]P)

tauto Φ P = holcase P of
· · ·
| ∀x : A.P ′ 7→ do pf← tauto (Φ, x : A) P ′;

〈[Φ]λx : A.pf/[idΦ, x]〉
| P1 → P2 7→ do pf← tauto (Φ, x : P1) P2;

〈[Φ]λx : P1.pf/[idΦ, x]〉
| · · ·

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: tauto

Strong static guarantees (similar to proof-by-reflection)

Easy to extend (e.g. recursively prove premises of
hypotheses)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example:
Deciding equality

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Example: deciding equality

Given a list of proofs of equality between terms, decide
whether two terms are equal.

Common algorithms for this procedure use some form of
an imperative union-find data structure in order to be
efficient.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Simple algorithm for deciding equality

Maintain a union-find data-structure that represents
equivalence classes.

Each equivalence class has one representative term.

Each term we are interested in refers to a parent term
that belongs to the same equivalence class.

If a term refers to itself, it is considered to be the
representative of its equivalence class.

When a new equality between two terms is processed,
find their representatives; if they are not the same, merge
the two equivalence classes by making one representative
the parent of the other.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

We choose to encode the union-find data structure as a
hash table.

Each term gets mapped into a value representing its
parent term.

We also want to yield proofs, so we store a proof object
on how a term is equal to its parent.

We have a built-in hash function for logical terms.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:

eqhash = array (ΣX : T .ΣX ′ : T .LT(X = X ′))

Each array element is a key-value pair, mapping one term, the
key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:

eqhash = array (ΣX : T .ΣX ′ : T .LT(X = X ′))

Each array element is a key-value pair, mapping one term, the
key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:

eqhash = array (ΣX : T .ΣX ′ : T .LT(X = X ′))

Each array element is a key-value pair, mapping one term, the
key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:

eqhash = array (ΣX : T .ΣX ′ : T .LT(X = X ′))

Each array element is a key-value pair, mapping one term, the
key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Representing the union-find data-structure

The type for the hash table will be:

eqhash = array (ΣX : T .ΣX ′ : T .LT(X = X ′))

Each array element is a key-value pair, mapping one term, the
key, to its value: its parent term, and a proof witnessing that
the two terms are equal.

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

find:

given a term and a hash-table, return the representative of its
equivalence class, plus a proof of equivalence

ΠX : T.eqhash→ ΣX ′ : T.LT(X = X ′)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

union:

given two terms, and a proof of their equivalence, update the
hash-table accordingly

ΠX : T.ΠX ′ : T.Πpf : X = X ′.eqhash→ unit

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Types for the main functions

areEqual?:

given two terms and a hash-table, determine whether they’re
equal or not

ΠX : T.ΠX ′ : T.eqhash→ option LT(X = X ′)

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Deciding equality

Simple to adapt the involved data structures in VeriML

While also yielding proofs

Termination non-trivial, but didn’t need to prove it

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Metatheory & implementation

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Metatheory

Developed the type system and small-step operational
semantics for VeriML

Proved progress and preservation for the language

Proof for normal ML features orthogonal to logic-related
features

Details in our upcoming ICFP 2010 paper, plus
accompanying TR

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Metatheory

If we disallow pattern-matching over proof objects, we
can prove that semantics are preserved even if proof
objects are erased

Type-safety guarantees that valid proof objects exist in
principle

Depending on wanted level of assurance, we can choose
to produce such proof objects or not

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Implementation

Prototype implementation in OCaml

About 5k lines of code

Implementation of logic is about 800 lines (trusted base)

Examples that type-check and run:

Propositional tautologies prover
Extension to also use equalities with uninterpreted
functions
Conversion of formulas to NNF

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Proof assistants

Use the language in order to develop the infrastructure of
a proof assistant

Type-safe proof scripts that don’t need to generate proof
objects

Questions:

How to represent proof states

How to code the basic LCF tactics

How should interactivity be handled

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Dependently typed languages

Programming in languages like Agda, Epigram, etc.
involves a form of theorem proving

Evidenced in the Russell framework

Can we provide a way to automate part of this using a
similar computational language?

Pattern matching is form of typecase construct

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Directions and future work

Certifying compilers, static analysis tools

Leverage the language to write such tools that produce
proofs

Use proof object erasure to avoid runtime costs

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

Thanks a lot!
More info:

http://flint.cs.yale.edu/publications/veriml.html

http://zoo.cs.yale.edu/~ams257

Antonis Stampoulis VeriML: Type-safe computation with terms of higher-order logic

