VeriML: Type-safe computation with terms of higher-order logic

Antonis Stampoulis Zhong Shao

Department of Computer Science, Yale University

Dependently Typed Programming 2010 July 9-10, Edinburgh, UK

Goal of this work

Design a language that combines general-purpose programming constructs with first-class support for manipulation of propositions and proof objects.

Motivation

Provide good language support for writing domain-specific tactics and decision procedures, to be used as part of large-scale proof development.

In large proof developments in proof assistants like Coq and Isabelle, the user needs to construct domain-specific tactics and decision procedures to greatly reduce manual proving effort.

- Evidenced in the YNot project: verifying imperative programs with relatively small manual effort thanks to domain-specific tactics.
- Another example: different parts of an OS kernel require different abstraction levels; therefore should be verified with different program logics. Want automated provers for each one of them!

Current language support is lacking. Available choices:

- Write them in ML (LCF family, Coq, Isabelle)
- Use LTac (Coq)
- Use proof-by-reflection

users have to know internals of proof assistant no information at the type-level about logical terms programming expressivity of ML (general recursion, imperative data structures)

Developing tactics in LTac

support for pattern matching over logical terms general recursion allowed completely untyped language, no static guarantees of safety complex data-structures or imperative features not supported binding not always handled correctly

Developing tactics using proof-by-reflection

type-safe support for fragment of logic strong static guarantees requires use of mix of languages, tedious encoding (esp. when binding is involved) limited programming model: no general recursion or imperative features tactics, decision procedures,

theorem provers, proofs, etc.

 $\mathsf{ML} + \mathsf{logic}$

explicit, type-safe support for logic full programming model of ML

Language design overview

Basic features of ML-like language

- General recursion
- Higher-order functions
- Algebraic datatypes (lists, trees, etc.)
- References, arrays

Logic-specific features

- Dependent types for terms of higher-order logic
- Pattern-matching construct for logical terms

Similar to languages for computation with LF terms (Delphin and Beluga). But:

- Instead of LF we use a higher-order logic that is a type theory modeled after CIC – thus it includes a notion of computation and terms are identified up to it.
- Terms in the computational language are not meant to be seen as meta-logical proofs.

The higher-order logic that we use: $\lambda \text{HOL}^{\text{ind}}$

A combination of a simple higher-order logic with proof objects ($\lambda_{\rm HOL})$ with some features of the Calculus of Inductive Constructions.

- Propositions and inductive data types living in same universe
- No dependent types, no ω -quantification
- Total functions over inductive data types
- Inductive predicates for logical connectives and relations
- Explicit proof objects classified by propositions
- Logical terms are viewed up to evaluation of total functions (βι-equivalence)

The higher-order logic that we use

$$\begin{split} & \operatorname{kinds}(K) ::= \operatorname{inductive types} : Nat, List, \cdots \mid Prop \\ \mid K_1 \to K_2 \\ & \operatorname{dom. of discourse}(d) ::= \operatorname{terms of inductive types} : \\ & x, zero, succ(d), nil, cons(d, d), \cdots \\ \mid \operatorname{total functions between inductive types} \\ & \operatorname{propositions}(P) ::= P_1 \to P_2 \mid \forall x : K.P \\ & \mid \operatorname{inductively defined predicates} : \leq, \cdots \\ & \mid \operatorname{inductively defined connectives} : \land, \lor, \neg, \cdots \\ & \operatorname{proof objects}(\pi) ::= \lambda x : P.\pi \mid \pi \; \pi' \mid \lambda x : K.\pi \mid \pi \; d \\ & \mid \operatorname{elimination principles for inductive definitions} \\ & \operatorname{HOL terms}(t) ::= K \mid d \mid P \mid \pi \\ \end{split}$$

- Simple, "uncontroversial" common core between most proof assistants
- Easy to extend if needed
- Simple metatheory
- Equivalence up to computation reduces proof object size
- Maintains most of the complexities of theories like CIC, such that our results can be extended to them

Example: Propositional tautologies prover

```
tauto :: \Pi P : Prop.option LT(P)
```

```
tauto :: \Pi P : Prop.option LT(P)
```

```
tauto :: \Pi P : Prop.option LT(P)
```

```
tauto :: \Pi P : Prop.option LT(P)
```

How to extend to handle quantification case?

```
tauto P = holcase P of

...

| \forall x : A.P' \mapsto \text{do pf} \leftarrow \text{tauto } P';

\langle \cdots \text{ proof of } \forall x : A.P' \cdots \rangle

| \cdots
```

How to extend to handle quantification case?

tauto
$$P$$
 = holcase P of
...
 $| \forall x : A.P' \mapsto \text{do pf} \leftarrow \text{tauto } P';$
 $\langle \cdots \text{ proof of } \forall x : A.P' \cdots \rangle$
 $| \cdots$

Need to track the fact that P^\prime and pf refer to an extended context compared to P

Handling binders: contextual terms

Modeled after contextual modal type theory, as used in Beluga. Use *contextual terms* – terms carrying the context they refer to

$$T ::= [\Phi] t \qquad \text{Typing:} \ \frac{\Phi \vdash t : t'}{\vdash [\Phi] t : [\Phi] t'}$$

Introduce contextual variables or metavariables – variables standing for contextual terms, and the associated environment ${\cal M}$

$$\mathcal{M} ::= \bullet \mid X : T$$

Computational language manipulates contextual terms instead of simple logical terms, therefore binds metavariables.

$$\tau ::= \cdots \mid \Pi X : T.\tau \mid \Sigma X : T.\tau$$

Need to extend the logic, so that we can use metavariables as part of logical terms.

$$t ::= \cdots \mid X/\sigma$$

$$\frac{X : [\Phi] t \in \mathcal{M} \qquad \mathcal{M}; \ \Phi' \vdash \sigma : \Phi}{\mathcal{M}; \ \Phi' \vdash X/\sigma : t[\sigma/\Phi]}$$

X will eventually be substituted with a term with free variables coming from an environment $\Phi.$ The substitution σ needs to map such variables into terms well-typed under the current Φ' context.

Handling binders: parametric contexts

- Need to be able to write functions that work with terms living in any context
- Therefore need a notion of quantification over contexts in the computational language.
- Simple extension to contextual terms and variables as presented so far.

Type of tauto becomes:

tauto :: $\Pi \Phi$: ctx. ΠP : $[\Phi]$ Prop.option LT($[\Phi] P$) tauto ΦP = holcase P of ... $| \forall x : A.P' \mapsto \text{do pf} \leftarrow \text{tauto} (\Phi, x : A) P';$ $\langle [\Phi] \lambda x : A.\text{pf}/[\text{id}_{\Phi}, x] \rangle$ $| P_1 \rightarrow P_2 \mapsto \text{do pf} \leftarrow \text{tauto} (\Phi, x : P_1) P_2;$ $\langle [\Phi] \lambda x : P_1.\text{pf}/[\text{id}_{\Phi}, x] \rangle$ $| \cdots$

- Strong static guarantees (similar to proof-by-reflection)
- Easy to extend (e.g. recursively prove premises of hypotheses)

Example: Deciding equality

- Given a list of proofs of equality between terms, decide whether two terms are equal.
- Common algorithms for this procedure use some form of an imperative union-find data structure in order to be efficient.

Simple algorithm for deciding equality

- Maintain a union-find data-structure that represents equivalence classes.
- Each equivalence class has one representative term.
- Each term we are interested in refers to a parent term that belongs to the same equivalence class.
- If a term refers to itself, it is considered to be the representative of its equivalence class.
- When a new equality between two terms is processed, find their representatives; if they are not the same, merge the two equivalence classes by making one representative the parent of the other.

Representing the union-find data-structure

- We choose to encode the union-find data structure as a hash table.
- Each term gets mapped into a value representing its parent term.
- We also want to yield proofs, so we store a proof object on how a term is equal to its parent.
- We have a built-in hash function for logical terms.

```
eqhash = array (\Sigma X : T \cdot \Sigma X' : T \cdot \mathsf{LT}(X = X'))
```

```
eqhash = array (\Sigma X : T \cdot \Sigma X' : T \cdot LT(X = X'))
```

```
eqhash = array (\Sigma X : T \cdot \Sigma X' : T \cdot \mathsf{LT}(X = X'))
```

```
eqhash = array (\Sigma X : T \cdot \Sigma X' : T \cdot LT(X = X'))
```

```
eqhash = array (\Sigma X : T \cdot \Sigma X' : T \cdot \mathsf{LT}(X = X'))
```

find:

given a term and a hash-table, return the representative of its equivalence class, plus a proof of equivalence

$$\Pi X: T.\mathsf{eqhash} \to \Sigma X': T.\mathsf{LT}(X = X')$$

union:

given two terms, and a proof of their equivalence, update the hash-table accordingly

 $\Pi X: T.\Pi X': T.\Pi \mathsf{pf}: X = X'.\mathsf{eqhash} \to \mathsf{unit}$

areEqual?:

given two terms and a hash-table, determine whether they're equal or not

 $\Pi X: T.\Pi X': T.\mathsf{eqhash} \to \mathsf{option} \ \mathsf{LT}(X = X')$

- Simple to adapt the involved data structures in VeriML
- While also yielding proofs
- Termination non-trivial, but didn't need to prove it

Metatheory & implementation

- Developed the type system and small-step operational semantics for VeriML
- Proved progress and preservation for the language
- Proof for normal ML features orthogonal to logic-related features
- Details in our upcoming ICFP 2010 paper, plus accompanying TR

- If we disallow pattern-matching over proof objects, we can prove that semantics are preserved even if proof objects are erased
- Type-safety guarantees that valid proof objects exist in principle
- Depending on wanted level of assurance, we can choose to produce such proof objects or not

- Prototype implementation in OCaml
- About 5k lines of code
- Implementation of logic is about 800 lines (trusted base)
- Examples that type-check and run:
 - Propositional tautologies prover
 - Extension to also use equalities with uninterpreted functions
 - Conversion of formulas to NNF

Proof assistants

- Use the language in order to develop the infrastructure of a proof assistant
- Type-safe proof scripts that don't need to generate proof objects

Questions:

- How to represent proof states
- How to code the basic LCF tactics
- How should interactivity be handled

Dependently typed languages

- Programming in languages like Agda, Epigram, etc. involves a form of theorem proving
- Evidenced in the Russell framework
- Can we provide a way to automate part of this using a similar computational language?
- Pattern matching is form of typecase construct

Certifying compilers, static analysis tools

- Leverage the language to write such tools that produce proofs
- Use proof object erasure to avoid runtime costs

Thanks a lot!

More info:

http://flint.cs.yale.edu/publications/veriml.html http://zoo.cs.yale.edu/~ams257