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What do languages of the future
look like?



Refining language design ideas
until they are “good enough”

takes time

→ Need better tooling for
experimentation
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Makam is a metalanguage for
rapid PL prototyping

-Main focus is expressivity

- Can handle modern research programming languages

- Small, conceptually clear core framework

- Close correspondence between definitions on paper
and in Makam

-Prototyping in days instead of months!
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Contributions

- The Makam metalanguage design, a refinement of
λProlog

- Entirely new implementation

- Set of design patterns addressing common challenges

- Various large examples: type systems of OCaml, HOL,
VeriML, Ur/Web; part of compilation from System F to
TAL



Overview



Makam is a typed language

-Need to declare object-level sorts and constructors
before use

- Similar to describing abstract syntax on paper

term : type.
typ : type.

intconst : int -> term.
plus : term -> term -> term.
app : term -> term -> term.

tint : typ.
arrow : typ -> typ -> typ.
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Based on logic programming

- Predicates for different operations (e.g. typing,
semantics, translations, etc.)

- Declarative and executable rules

typeof : term -> typ -> prop.
eval : term -> term -> prop.

typeof (app E1 E2) T’ <-
typeof E1 (arrow T T’), typeof E2 T.
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Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages



Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages



Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages



Higher-order abstract syntax

lam : (term -> term) -> term.

typeof (lam E) (arrow T T’) <-
(x:term -> typeof x T -> typeof (E x) T’).

eval (app E1 E2) V’ <-
eval E1 (lam E), eval E2 V2, eval (E V2) V’.



Querying

- Querying for typeof gives us a prototype type checker

-Querying for eval gives us a prototype interpreter

typeof (lam (fun x => plus x x)) T ?
>> T := arrow tint tint
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Polymorphism
& higher-order predicates

map : (A -> B -> prop) -> list A -> list B -> prop.
map P (cons HD TL) (cons HD’ TL’) <-
P HD HD’, map P TL TL’.

map P nil nil.

tuple : list term -> term.
prod : list typ -> typ.
typeof (tuple ES) (prod TS) <- map typeof ES TS.
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Polymorphic binding structures

- Examples: multiple binding, mutual recursion, linear
variables, etc.

- Definable within the language

lammany : -> term.

typeof (lammany E) (arrowmany TS T) <-
newvars_many E (fun xs body =>
assume_many typeof xs TS
(typeof body T)).
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Unification in Makam

- Based on the higher-order pattern matching
algorithm

-Means that unification is aware of the HOAS binding
structure

- Subsumes the core operations of many type
inferencing mechanisms
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Unification in Makam

polylam : (typ -> term) -> term.
polyinst : term -> typ -> term.
forall : (typ -> typ) -> typ.

typeof (polylam E) (forall T) <-
(a:typ -> typeof (E a) (T a)).

typeof (polyinst E T) (T’ T) <-
typeof E (pi T’).



Structural recursion

-Many operations are defined through structural
recursion save for a few essential cases

-Usually need lots of boilerplate

expandsugar : term -> term -> prop.
expandsugar (lammany E) E’ <- ...
expandsugar (app E1 E2) (app E1’ E2’) <-
expandsugar E1 E1’, expandsugar E2 E2’.

expandsugar (lam E) (lam E’) <-
(x:term -> expandsugar x x -> expandsugar (E x) (E’ x)).
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Structural recursion

-We can define a fully generic structural recursion
operation in Makam

-Relies on dynamic typing unification

-Works even with auxiliary data structures like list
and bindmany

expandsugar : term -> term -> prop.
expandsugar E E’ <-
ifte (eq E (lammany _))

(...)
(structural expandsugar E E’).
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Staging

- Predicates that compute other predicates, top-level
commands, etc.

- Allows metalanguage extensions to be defined within
the metalanguage

- Examples: parser and pretty-printer generation, mode
declarations, etc.

‘( parse term
( ”λ” x:string ”.” e:term { lam (nu x e) } ) ).
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Examples

OCaml type system 550 lines
Type classes 100 lines
Higher-order logic 250 lines
VeriML constructs 150 lines
Featherweight Ur 500 lines
System F to TAL 850 lines
PEG parser gen 350 lines
LF 350 lines



Summary

-Makam reduces PL prototyping time from months to
days

- Small core yet surprisingly expressive

- Reusable design patterns to handle common
challenges

- Can already handle sophisticated type systems and
translation procedures

-Will release publicly mid-July

Thanks!





Backup slides



Staging

and : prop -> prop -> prop.
newvar : (A -> prop) -> prop.
assume : prop -> prop -> prop.

cmd_newconst : string -> A -> cmd.
cmd_newrule : prop -> prop -> cmd.
cmd_stage : (cmd -> prop) -> cmd.
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