
The Makam metalanguage
Reducing the cost of experimentation in PL research

Antonis Stampoulis and Adam Chlipala

MIT CSAIL

2nd CRSX and HACS User Meetup
June 25th, 2014

What do languages of the future
look like?

Refining language design ideas
until they are “good enough”

takes time

→ Need better tooling for
experimentation

Refining language design ideas
until they are “good enough”

takes time

→ Need better tooling for
experimentation

Makam is a metalanguage for
rapid PL prototyping

-Main focus is expressivity

- Can handle modern research programming languages

- Small, conceptually clear core framework

- Close correspondence between definitions on paper
and in Makam

-Prototyping in days instead of months!

Makam is a metalanguage for
rapid PL prototyping

-Main focus is expressivity

- Can handle modern research programming languages

- Small, conceptually clear core framework

- Close correspondence between definitions on paper
and in Makam

-Prototyping in days instead of months!

Contributions

- The Makam metalanguage design, a refinement of
λProlog

- Entirely new implementation

- Set of design patterns addressing common challenges

- Various large examples: type systems of OCaml, HOL,
VeriML, Ur/Web; part of compilation from System F to
TAL

Overview

Makam is a typed language

-Need to declare object-level sorts and constructors
before use

- Similar to describing abstract syntax on paper

term : type.
typ : type.

intconst : int -> term.
plus : term -> term -> term.
app : term -> term -> term.

tint : typ.
arrow : typ -> typ -> typ.

Makam is a typed language

-Need to declare object-level sorts and constructors
before use

- Similar to describing abstract syntax on paper

term : type.
typ : type.

intconst : int -> term.
plus : term -> term -> term.
app : term -> term -> term.

tint : typ.
arrow : typ -> typ -> typ.

Makam is a typed language

-Need to declare object-level sorts and constructors
before use

- Similar to describing abstract syntax on paper

term : type.
typ : type.

intconst : int -> term.
plus : term -> term -> term.
app : term -> term -> term.

tint : typ.
arrow : typ -> typ -> typ.

Based on logic programming

- Predicates for different operations (e.g. typing,
semantics, translations, etc.)

- Declarative and executable rules

typeof : term -> typ -> prop.
eval : term -> term -> prop.

typeof (app E1 E2) T’ <-
typeof E1 (arrow T T’), typeof E2 T.

Based on logic programming

- Predicates for different operations (e.g. typing,
semantics, translations, etc.)

- Declarative and executable rules

typeof : term -> typ -> prop.
eval : term -> term -> prop.

typeof (app E1 E2) T’ <-
typeof E1 (arrow T T’), typeof E2 T.

Based on logic programming

- Predicates for different operations (e.g. typing,
semantics, translations, etc.)

- Declarative and executable rules

typeof : term -> typ -> prop.
eval : term -> term -> prop.

typeof (app E1 E2) T’ <-
typeof E1 (arrow T T’), typeof E2 T.

Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages

Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages

Representing binding

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′
e1 ⇓ λx.e e2 ⇓ v2 e[v2/x] ⇓ v′

e1 e2 ⇓ v′

- A common and significant challenge in language
implementation

-λProlog idea: implement once and for all in the
metalanguage; reuse it in the object languages

Higher-order abstract syntax

lam : (term -> term) -> term.

typeof (lam E) (arrow T T’) <-
(x:term -> typeof x T -> typeof (E x) T’).

eval (app E1 E2) V’ <-
eval E1 (lam E), eval E2 V2, eval (E V2) V’.

Querying

- Querying for typeof gives us a prototype type checker

-Querying for eval gives us a prototype interpreter

typeof (lam (fun x => plus x x)) T ?
>> T := arrow tint tint

Querying

- Querying for typeof gives us a prototype type checker

-Querying for eval gives us a prototype interpreter

typeof (lam (fun x => plus x x)) T ?
>> T := arrow tint tint

Querying

- Querying for typeof gives us a prototype type checker

-Querying for eval gives us a prototype interpreter

typeof (lam (fun x => plus x x)) T ?
>> T := arrow tint tint

Polymorphism
& higher-order predicates

map : (A -> B -> prop) -> list A -> list B -> prop.
map P (cons HD TL) (cons HD’ TL’) <-
P HD HD’, map P TL TL’.

map P nil nil.

tuple : list term -> term.
prod : list typ -> typ.
typeof (tuple ES) (prod TS) <- map typeof ES TS.

Polymorphism
& higher-order predicates

map : (A -> B -> prop) -> list A -> list B -> prop.
map P (cons HD TL) (cons HD’ TL’) <-
P HD HD’, map P TL TL’.

map P nil nil.

tuple : list term -> term.
prod : list typ -> typ.
typeof (tuple ES) (prod TS) <- map typeof ES TS.

Polymorphic binding structures

- Examples: multiple binding, mutual recursion, linear
variables, etc.

- Definable within the language

lammany : -> term.

typeof (lammany E) (arrowmany TS T) <-
newvars_many E (fun xs body =>
assume_many typeof xs TS
(typeof body T)).

Polymorphic binding structures

- Examples: multiple binding, mutual recursion, linear
variables, etc.

- Definable within the language

lammany : (term -> (term -> -> term)) -> term.

typeof (lammany E) (arrowmany TS T) <-
newvars_many E (fun xs body =>
assume_many typeof xs TS
(typeof body T)).

Polymorphic binding structures

- Examples: multiple binding, mutual recursion, linear
variables, etc.

- Definable within the language

lammany : bindmany term term -> term.

typeof (lammany E) (arrowmany TS T) <-
newvars_many E (fun xs body =>
assume_many typeof xs TS
(typeof body T)).

Polymorphic binding structures

- Examples: multiple binding, mutual recursion, linear
variables, etc.

- Definable within the language

lammany : bindmany term term -> term.

typeof (lammany E) (arrowmany TS T) <-
newvars_many E (fun xs body =>
assume_many typeof xs TS
(typeof body T)).

Unification in Makam

- Based on the higher-order pattern matching
algorithm

-Means that unification is aware of the HOAS binding
structure

- Subsumes the core operations of many type
inferencing mechanisms

Unification in Makam

- Based on the higher-order pattern matching
algorithm

-Means that unification is aware of the HOAS binding
structure

- Subsumes the core operations of many type
inferencing mechanisms

Unification in Makam

polylam : (typ -> term) -> term.
polyinst : term -> typ -> term.
forall : (typ -> typ) -> typ.

typeof (polylam E) (forall T) <-
(a:typ -> typeof (E a) (T a)).

typeof (polyinst E T) (T’ T) <-
typeof E (pi T’).

Structural recursion

-Many operations are defined through structural
recursion save for a few essential cases

-Usually need lots of boilerplate

expandsugar : term -> term -> prop.
expandsugar (lammany E) E’ <- ...
expandsugar (app E1 E2) (app E1’ E2’) <-
expandsugar E1 E1’, expandsugar E2 E2’.

expandsugar (lam E) (lam E’) <-
(x:term -> expandsugar x x -> expandsugar (E x) (E’ x)).

Structural recursion

-Many operations are defined through structural
recursion save for a few essential cases

-Usually need lots of boilerplate

expandsugar : term -> term -> prop.
expandsugar (lammany E) E’ <- ...
expandsugar (app E1 E2) (app E1’ E2’) <-
expandsugar E1 E1’, expandsugar E2 E2’.

expandsugar (lam E) (lam E’) <-
(x:term -> expandsugar x x -> expandsugar (E x) (E’ x)).

Structural recursion

-Many operations are defined through structural
recursion save for a few essential cases

-Usually need lots of boilerplate

expandsugar : term -> term -> prop.
expandsugar (lammany E) E’ <- ...
expandsugar (app E1 E2) (app E1’ E2’) <-
expandsugar E1 E1’, expandsugar E2 E2’.

expandsugar (lam E) (lam E’) <-
(x:term -> expandsugar x x -> expandsugar (E x) (E’ x)).

Structural recursion

-We can define a fully generic structural recursion
operation in Makam

-Relies on dynamic typing unification

-Works even with auxiliary data structures like list
and bindmany

expandsugar : term -> term -> prop.
expandsugar E E’ <-
ifte (eq E (lammany _))

(...)
(structural expandsugar E E’).

Structural recursion

-We can define a fully generic structural recursion
operation in Makam

-Relies on dynamic typing unification

-Works even with auxiliary data structures like list
and bindmany

expandsugar : term -> term -> prop.
expandsugar E E’ <-
ifte (eq E (lammany _))

(...)
(structural expandsugar E E’).

Structural recursion

-We can define a fully generic structural recursion
operation in Makam

-Relies on dynamic typing unification

-Works even with auxiliary data structures like list
and bindmany

expandsugar : term -> term -> prop.
expandsugar E E’ <-
ifte (eq E (lammany _))

(...)
(structural expandsugar E E’).

Staging

- Predicates that compute other predicates, top-level
commands, etc.

- Allows metalanguage extensions to be defined within
the metalanguage

- Examples: parser and pretty-printer generation, mode
declarations, etc.

‘(parse term
(”λ” x:string ”.” e:term { lam (nu x e) })).

Staging

- Predicates that compute other predicates, top-level
commands, etc.

- Allows metalanguage extensions to be defined within
the metalanguage

- Examples: parser and pretty-printer generation, mode
declarations, etc.

‘(parse term
(”λ” x:string ”.” e:term { lam (nu x e) })).

Staging

- Predicates that compute other predicates, top-level
commands, etc.

- Allows metalanguage extensions to be defined within
the metalanguage

- Examples: parser and pretty-printer generation, mode
declarations, etc.

‘(parse term
(”λ” x:string ”.” e:term { lam (nu x e) })).

Examples

OCaml type system 550 lines
Type classes 100 lines
Higher-order logic 250 lines
VeriML constructs 150 lines
Featherweight Ur 500 lines
System F to TAL 850 lines
PEG parser gen 350 lines
LF 350 lines

Summary

-Makam reduces PL prototyping time from months to
days

- Small core yet surprisingly expressive

- Reusable design patterns to handle common
challenges

- Can already handle sophisticated type systems and
translation procedures

-Will release publicly mid-July

Thanks!

Backup slides

Staging

and : prop -> prop -> prop.
newvar : (A -> prop) -> prop.
assume : prop -> prop -> prop.

cmd_newconst : string -> A -> cmd.
cmd_newrule : prop -> prop -> cmd.
cmd_stage : (cmd -> prop) -> cmd.

Staging

and : prop -> prop -> prop.
newvar : (A -> prop) -> prop.
assume : prop -> prop -> prop.

cmd_newconst : string -> A -> cmd.
cmd_newrule : prop -> prop -> cmd.
cmd_stage : (cmd -> prop) -> cmd.

